Fully Homomorphic Encryption with Polylog Overhead
نویسندگان
چکیده
We show that homomorphic evaluation of (wide enough) arithmetic circuits can be accomplished with only polylogarithmic overhead. Namely, we present a construction of fully homomorphic encryption (FHE) schemes that for security parameter λ can evaluate any width-Ω(λ) circuit with t gates in time t · polylog(λ). To get low overhead, we use the recent batch homomorphic evaluation techniques of Smart-Vercauteren and BrakerskiGentry-Vaikuntanathan, who showed that homomorphic operations can be applied to “packed” ciphertexts that encrypt vectors of plaintext elements. In this work, we introduce permuting/routing techniques to move plaintext elements across these vectors efficiently. Hence, we are able to implement general arithmetic circuit in a batched fashion without ever needing to “unpack” the plaintext vectors. We also introduce some other optimizations that can speed up homomorphic evaluation in certain cases. For example, we show how to use the Frobenius map to raise plaintext elements to powers of p at the “cost” of a linear operation.
منابع مشابه
Private Information Retrieval Based On Fully Homomorphic Encryption
We propose a construction of a single database private information retrieval system using fully homomorphic encryption. The construction results in a system with Ω(log2 n) communication complexity, and polylogarithmic computational overhead, in the size of the database. An improved construction is also proposed, which reduces the client’s communication overhead, and leaves open the possibility ...
متن کاملSESOS: A Verifiable Searchable Outsourcing Scheme for Ordered Structured Data in Cloud Computing
While cloud computing is growing at a remarkable speed, privacy issues are far from being solved. One way to diminish privacy concerns is to store data on the cloud in encrypted form. However, encryption often hinders useful computation cloud services. A theoretical approach is to employ the so-called fully homomorphic encryption, yet the overhead is so high that it is not considered a viable s...
متن کاملLimitations on information theoretically secure quantum homomorphic encryption
Homomorphic encryption is a form of encryption which allows computation to be carried out on the encrypted data without the need for decryption. The success of quantum approaches to related tasks in a delegated computation setting has raised the question of whether quantum mechanics may be used to achieve information theoretically secure fully homomorphic encryption. Here we show, via an inform...
متن کاملCRT-based fully homomorphic encryption over the integers
In 1978, Rivest, Adleman and Dertouzos introduced the basic concept of privacy homomorphism that allows computation on encrypted data without decryption. It was elegant work that precedes the recent development of fully homomorphic encryption schemes although there were found some security flaws, e.g., ring homomorphic schemes are broken by the knownplaintext attacks. In this paper, we revisit ...
متن کاملCommunication Locality in Secure Multi-party Computation - How to Run Sublinear Algorithms in a Distributed Setting
We devise multi-party computation protocols for general secure function evaluation with the property that each party is only required to communicate with a small number of dynamically chosen parties. More explicitly, starting with n parties connected via a complete and synchronous network, our protocol requires each party to send messages to (and process messages from) at most polylog(n) other ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2011 شماره
صفحات -
تاریخ انتشار 2011